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Abstract: In the present paper, a linearized difference scheme with non-uniform meshes for semi-linear parabolic
equation is proposed. The scheme is constructed according to the change rule of the solution by travelling wave
solution theory for partial differential equation. The existence and uniqueness of the numerical solution are derived
by linear systems theory, and the convergence and stability of the difference scheme are proved by the discrete
energy method. Numerical simulations verify the theoretical analysis, the results show that the numerical solution
with non-uniform meshs is more accurate than that with uniform meshes in the sense of not costing much more
computing time. It is concluded that our scheme is effective.

Key–Words: semi-linear parabolic equation, non-uniform meshes, difference schemes, convergence, stability

1 Introduction
The Semi-linear Parabolic Equations have wide appli-
cations in chemical reaction, neural conduction, bio-
logical competition and other fields. The studies on
these equations have been a hot topic in past decades.
It is of significance to explore theoretically and nu-
merically the solutions to these equations. There are
many available works contributed to investigation in
this field for instance see [1-3]. Ames in [4] gave a
large collection of physical problems having nonlin-
ear parabolic equations as models. Also the survey
lists various methods for exact, approximate and nu-
merical solutions for those examples. Based on these
equations, there had been some finite difference meth-
ods such as alternating direction iterative scheme,
predictor-correctors methods and the linearized two
or three level difference schemes [5-8]. Ramos in [9-
11] compared various finite difference schemes that
include explicit, implicit and linearized schemes. Be-
sides these finite difference schemes, Tang in [12]
studied finite element method of a nonlinear diffu-
sion system. All methods mentioned above have not
taken rule change of the analytical solution into ac-
count; the rule is that it changes quickly in some area,
and slowly in other area. In fact, this rule can be
deducted by travelling wave solution theory for par-
tial differential equation. According to this rule, the
traditional methods given above had a disadvantage.
When the exactness of numerical solution is required,
one has to refine grid by increasing grid points. This

way causes increase of computing amount. To over-
come the drawback, the finite difference schemes with
non-uniform meshes have attracted great attention.
Mattheij and Smooke, Samarskij and his co-operators
investigated the stability and convergence of variable
step (space and time) algorithms in the solution of the
mixed initial-boundary problem of one-dimensional
parabolic equation

∂u

∂t
=
∂2u

∂2x
+ f(x, t)

and two-dimensional parabolic equation

∂u

∂t
=

∂2u

∂2x1
+

∂2u

∂2x2
+ f(x1, x2, t)

in [13-15] respectively. For the generalized non-linear
parabolic systems ut = A(x, t, u)uxx+f(x, t, u, ux),
Zhou constructed the general finite difference scheme
with non-uniform meshes and proved the existence
and 1st order convergence in L∞-norm of the discrete
solutions for the difference scheme by the fixed point
technique in [16]. Yuan proved the unique solvabil-
ity and stability for the difference scheme constructed
in [16] by the energy method in [17, 18]. Their work
solved some unexpected phenomenon, but their proof
is very complex .Meanwhile, they had no numeri-
cal experiments to justify their theoretical analysis.
In order to solve the existed problem, Zhou and Hu
constructed an implicit difference schemes with non-
uniform meshes for the flame equation, and they prove
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the uniqueness, existence, convergence and stability
of difference solution of the implicit scheme in [21,
22]. The the scheme with non-uniform meshes for
space was constructed by a function transformation,
but the meshs for time is still uniform. The numerical
experiments were carried out to justify that the con-
vergence of the solution is 1st-order for time. These
results coincide with the previous theoretical analysis.
However, in order to get the solution to the implicit
scheme, the iteration method for non-linear equations
needs to be applied, which costs a quantity of time for
every time step. To overcome this drawback, we con-
structed a kind of linearized finite difference scheme
on the base of implicit scheme in [21, 22]

In this paper, we will investigate a linearized dif-
ference scheme with non-uniform meshes approxi-
mating to the following Dirichlet problem of a semi-
linear parabolic equation:

∂u

∂t
=
∂2u

∂x2
+ f(u), (1)

u(x, 0) = φ(x), x ∈ [a, b], (2)

u(a, t) = α(t), u(b, t) = β(t), t ∈ [0, T ],
(3)

Let Ω̄T = [a, b]× [0, T ].
In order to prove some properties of the finite dif-

ference scheme, we impose the following conditions:
(I) The analytical solution of problem (1) satisfies

u(x, t) ∈ C4,3,and there exists a positive constant C0

satisfying |u|+ |ut|+ |ux|+ |uxx| ≤ C0.
(II) Let f(s) be a two times continuous differen-

tiable function for s, there exist two positive constants
C1 and P satisfying {|f(s)|, |f ′(s)|, |f ′′(s)|} ≤ C1

when |s| ≤ C0 + P .
(III) Boundary value functions α(t), β(t) are

continuous differentiable function for t, initial func-
tion φ(x) is also continuous differentiable function
with respect to x, and we have α(0) = φ(a), β(0) =
φ(b).

2 Difference Scheme and Notations
Let us divide the rectangular domain Ω̄T = [a, b] ×
[0, T ] into the small rectangular grids

Ωτ
h =

{
a = x0 < x1, . . . , < xI−1 < xI = b,
0 = t0 < t1 < . . . , < tK = T

}
.

The i+ 1th domain on space is [xi, xi+1]. The mesh-
steps of space is hi+ 1

2
= xi+1−xi which are assumed

to be unequal. The traditional uniform meshes are ap-
plied for time

0 = t0 < t1 < t2 . . . tK−1 < tK = T, τ = tk−tk−1.

We denote the maximum value of space meshsteps is

h = max
0≤i≤I−1

{hi+ 1
2
},

the minimum of space meshsteps is

h∗ = min
0≤i≤I−1

{hi+ 1
2
},

the ratio of maximum and minimum of space mesh-
steps Rh∗ = h

h∗
. So we denote discrete functions

uh = {uki | i = 0, 1, 2, . . . , I, k = 0, 1, 2, . . . ,K}

on ΩT . The other notations are as follows:

∆tu
k
i =

uk+1
i − uki
τ

, δxu
k
i+ 1

2
=

1

hi+ 1
2

(uki+1 − uki ),

δ2xu
k
i =

1

h
(2)
i

(δxu
k
i+ 1

2
−δxuki− 1

2
), h

(2)
i =

hi+ 1
2
+ hi− 1

2

2
,

∥uh∥∞ = max
0≤i≤I

{|ui|}, ∥uh∥22 =
I−1∑
i=1

|ui|2h(2)i ,

∥δxuh∥22 =
I−1∑
i=0

|δxui+ 1
2
|2hi+ 1

2
,

∥δxuh∥∞ = max
0≤i≤I

|δui+ 1
2
|,

By Taylor expansion, we construct the linearized dif-
ference scheme:

(1− τf ′(uki ))△tu
k
i = δ2xu

k+1
i + f(uki ),

1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1,
(4)

u0i = φ(xi), 0 ≤ i ≤ I, (5)

uk0 = α(tk), ukI = β(tk), 0 ≤ k ≤ K, (6)

3 Existence and Uniqueness

Theorem 1 There exists unique difference solution
uki , i = 1, 2, . . . , I − 1, k = 1, 2, . . . ,K + 1 satis-
fying the difference scheme (4)-(6)
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Proof: Expanding the difference scheme(4)-(6), we
get

− 2τ

hi− 1
2
(hi− 1

2
+ hi+ 1

2
)
uk+1
i−1

+(1 +
2τ

hi− 1
2
hi+ 1

2

− τf ′(uki ))u
k+1
i

− 2τ

hi+ 1
2
(hi− 1

2
+ hi+ 1

2
)
uk+1
i+1

= (1− τf ′(uki ))u
k
i + τf(uki ),

1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1,

Obviously, it is triangle linear systems. Let

ai = − 2τ
h
i− 1

2
(h

i− 1
2
+h

i+1
2
) ,

bi = 1 + 2τ
h
i− 1

2
h
i+1

2

− τf ′(uki ),

ci = − 2τ

hi+ 1
2
(hi− 1

2
+ hi+ 1

2
)
,

for i = 1, 2, . . . , I − 1. By ∥uk∥∞ ≤ C0 + P (This
result can be gotten by mathematical induction in sec-
tion 3) and assumption (II),when time step τ < 1

C1
,

we get 1 − τf ′(uki ) > 1 − C1τ > 0. Fetching the
absolute value of b1 and c1,

|b1| = 1 +
2τ

h 1
2
h 3

2

− τf ′(uki ),

|c1| =
2τ

h 3
2
(h 1

2
+ h 3

2
)
=

2τ

h 3
2
h 1

2
+ h23

2

,

we get |b1| > |c1|. Similarly we get |bI−1| > |aI−1|.
For i = 2, 3, . . . , I − 2, summing up the absolute

value of ai, ci, we get

|ai|+ |ci| =
2τ

hi− 1
2
(hi− 1

2
+ hi+ 1

2
)

+
2τ

hi+ 1
2
(hi− 1

2
+ hi+ 1

2
)

=
2τ(hi+ 1

2
+ hi− 1

2
)

hi− 1
2
hi+ 1

2
(hi− 1

2
+ hi+ 1

2
)
=

2τ

hi− 1
2
hi+ 1

2

,

Comparing it with |bi| and by 1 − τf ′(uki ) > 0, we
get

|bi| > |ai|+ |ci|.

It implies that the coefficient matrix is the strictly row
diagonally dominant. Therefore, there are unique so-
lution uki , i = 1, 2, . . . , I − 1, k = 1, 2, . . . ,K to
the linear systems [23]. It implies that there exists
a unique numerical solution to satisfy the difference
scheme (4)-(6).

4 Convergence

In order to prove the convergence and stability of the
solution to the difference scheme (4)-(6), we import
four lemmas [16].

Lemma 2 For any uh = {ui|i = 0, 1, 2, . . . , I} and
vh = {vi|i = 0, 1, 2, . . . , I}, there are

I−1∑
i=0

ui(vi+1 − vi) = −
I∑

i=1
vi(ui − ui−1)

−u0v0 + uIvI ,

I−1∑
i=1

ui(δvi+ 1
2
− δvi− 1

2
) = −

I−1∑
i=0

δui+ 1
2
δvi+ 1

2
hi+ 1

2

−u0δv 1
2
+ uIδvI− 1

2
.

Lemma 3 For any uh = {ui|i = 0, 1, 2, . . . , I} de-
fined on the grid points {xi|i = 0, 1, 2, . . . , I} with
unequal meshsteps, there are relations:

∥uh∥∞ ≤ 1√
h∗

∥uh∥2, ∥δuh∥∞ ≤ 1√
h∗

∥δuh∥2.

Lemma 4 For any uh = {ui|i = 0, 1, 2, . . . , I} de-
fined on the grid points {xi|i = 0, 1, 2, . . . , I} ,there
are relations:

∥uh∥22 ≤ l2∥δuh∥22 + 2l|u0|2,

here 0 = x0 < x1 < . . . < xI−1 < xI = l.

Theorem 5 For any uh = {ui|i = 0, 1, 2, . . . , I} de-
fined on the grid points{xi|i = 0, 1, 2, . . . , I} ,there
are relations:

∥uh∥22 ≤ b2∥δuh∥22 + 2(b− a)|u0|2,

here a = x0 < x1 < . . . < xI−1 < xI = b.

Remark: The proof of Theorem 5 is completely same
as that of lemma 3 in [16].This result is only popular-
ized from [0,l] to general domain [a, b].

Lemma 6 Suppose the discrete function uτ =
{uk|k = 0, 1, 2, . . . ,K} defined on the grid
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points{tk|k = 0, 1, 2, . . . ,K} with unequal mesh-
steps τ = {τk = tk+1 − tk > 0|k = 0, 1, 2, . . . ,K −
1} satisfies recurring relation

uk+1 − uk ≤ Aτk(uk+1 + uk) + Cτk

then there is uk ≤ e3Atku0+2Ctke3Atk , where mesh-
steps 0 = t0 < t1 < . . . < tK−1 < tK = T are
sufficiently small that 2Aτ ≤ 1, A and C are con-
stants.

The convergence theorem and its proof are as fol-
lows:

Theorem 7 Suppose that the initial boundary prob-
lem of partial difference equations (1)-(3) satisfy as-
sumptions (I), (II) and (III), the meshsteps h, τ , τ√

h∗
be sufficiently small and Rh∗ be boundary. We denote
the error of discrete solution eh = {eki = Uk

i −uki |i =
0, 1, 2, . . . , I; k = 0, 1, 2, . . . ,K},then there are esti-
mates

max
0≤k≤K

∥ekh∥2, max
0≤k≤K

∥ekh∥∞, max
0≤k≤K

∥δxekh∥2,

(K−1∑
i=0

∥δ2xek+1
h ∥22τ

) 1
2 ,

(
K−1∑
i=0

∥ ek+1
h

−ekh
τ ∥22τ

) 1
2

= O(τ + h),

and max
0≤k≤K

∥δxekh∥∞ = O( τ√
h∗
, h

1
2 ), where Uk

i =

u(xi, tk).

Proof: By Taylor expansion at point (xi, tk),we get

u(xi, tk+1) = u(xi, tk) +
∂u

∂t
(xi, tk)τ

+
∂2u

∂t2
(xi, η

(1)
ik )τ2,

(7)

where η(1)ik is between tk and tk+1.
It implies that

∂u

∂t
(xi, tk) =

u(xi, tk+1)− u(xi, tk)

τ

−∂
2u

∂t2
(xi, η

(1)
ik )τ, (8)

From the notation, we get

∂u

∂t
(xi, tk) = ∆tU

k
i +R

(1)
ik , (9)

where

R
(1)
ik = −∂

2u

∂t2
(xi, η

(1)
ik )τ.

For the diffusion part, we have

u(xi+1, tk+1) = u(xi, tk+1) +
∂u

∂x
(xi, tk+1)hi+ 1

2

+
∂2u

∂x2
(xi, tk+1)h

2
i+ 1

2
+
∂3u

∂x3
(ζ

(1)
ik , tk+1)h

3
i+ 1

2
,

(10)

u(xi−1, tk+1) = u(xi, tk+1)−
∂u

∂x
(xi, tk+1)hi− 1

2

+
∂2u

∂x2
(xi, tk+1)h

2
i− 1

2
− ∂3u

∂x3
(ζ

(2)
ik , tk+1)h

3
i− 1

2
,

(11)

where ζ(1)ik is between xi and xi+1, ζ(2)ik is between xi
and xi−1.

Multiplying (10), (11) by hi− 1
2
, hi+ 1

2
respec-

tively, we get

hi− 1
2
u(xi+1, tk+1) = hi− 1

2
u(xi, tk+1)

+hi− 1
2
hi+ 1

2

∂u

∂x
(xi, tk+1) + hi− 1

2
h2
i+ 1

2

∂2u

∂x2
(xi, tk+1)

+hi− 1
2
h3
i+ 1

2

∂3u

∂x3
(ζ

(1)
ik , tk+1),

(12)
hi+ 1

2
u(xi−1, tk+1) = hi+ 1

2
u(xi, tk+1)

+hi− 1
2
hi+ 1

2

∂u

∂x
(xi, tk+1) + hi+ 1

2
h2
i− 1

2

∂2u

∂x2
(xi, tk+1)

+hi+ 1
2
h3
i− 1

2

∂3u

∂x3
(ζ

(2)
ik , tk+1),

(13)
Adding (12) to (13), then dividing by
hi+ 1

2
hi− 1

2
(hi− 1

2
+ hi+ 1

2
), we get

1

hi− 1
2
(hi− 1

2
+ hi+ 1

2
)
u(xi−1, tk+1)

− 1

hi− 1
2
hi+ 1

2

u(xi, tk+1)

+
1

hi+ 1
2
(hi− 1

2
+ hi+ 1

2
)
u(xi+1, tk+1)

=
∂2u

∂x2
(xi, tk+1) +

h2
i+ 1

2

hi− 1
2
+ hi+ 1

2

∂3u

∂x3
(ζ

(1)
ik , tk+1)

−
h2
i− 1

2

hi− 1
2
+ hi+ 1

2

∂3u

∂x3
(ζ

(2)
ik , tk+1),

(14)
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From the notation, we get

∂2u

∂x2
(xi, tk+1) = δ2xU

k+1
i +R

(2)
ik , (15)

where

R
(2)
ik = −

h2
i+ 1

2

hi− 1
2
+ hi+ 1

2

∂3u

∂x3
(ζ

(1)
ik , tk+1)

+
h2
i− 1

2

hi− 1
2
+ hi+ 1

2

∂3u

∂x3
(ζ

(2)
ik , tk+1).

For the reaction part, similarly by Taylor expansion,
we have

f(u(xi, tk+1) = f(u(xi, tk)) + τf ′(u(xi, tk))

×∂u
∂t

(xi, tk) +
τ2

2

{
f ′′(u(xi, η

(2)
ik ))

(∂u
∂t

(xi, η
(2)
ik )

)2
+f ′(u(xi, η

(2)
ik ))

∂2u

∂t2
(xi, η

(2)
ik )

}
,

(16)

where η(2)ik is between tk and tk+1.
From the notation,we get

f(u(xi, tk+1) = f(Uk
i ) + τf ′(Uk

i )∆tU
k
i +R

(3)
ik ,
(17)

where

R
(3)
ik =

τ2

2

{
f ′′(u(xi, η

(2)
ik ))

(∂u
∂t

(xi, η
(2)
ik )

)2
+f ′(u(xi, η

(2)
ik ))

∂2u

∂t2
(xi, η

(2)
ik )

}
.

Substituting (9),(15) and (17) into initial problem of
Eqs. (1)-(3), we get

(1− τf ′(Uk
i ))△tU

k
i = δ2xU

k+1
i + f(Uk

i ) +Rik,
1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1,

(18)
U0
i = φ(xi), 0 ≤ i ≤ I, (19)

Uk
0 = α(tk), Uk

I = β(tk), 0 ≤ k ≤ K, (20)

where Rik = R
(1)
ik +R

(2)
ik +R

(3)
ik = O(τ + h), so we

get the difference scheme with non-uniform meshes
(4)-(6).

Subtracting (4)-(6) from (18)-(20), we arrive at
the error equations:

(1− τf ′(Uk
i ))∆te

k
i = δ2xe

k+1
i + f(Uk

i )− f(uki )+

τ [f ′(Uk
i )− f ′(uki )]∆tu

k
i +Rik,

1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1, (21)

e0i = 0, 0 ≤ i ≤ I, (22)

ek0 = 0, ekI = 0, 0 ≤ k ≤ K, (23)

By the differentiability of f and the differential mean
value theorem, the second and the third term of (21)
are changed into

f(Uk
i )− f(uki ) = f ′(ξ

(1)
ik )eki , (24)

where ξ(1)ik is between Uk
i and uki .

The fourth term of (21) is changed to

τ [f ′(Uk
i )− f ′(uki )]∆tu

k
i = τf ′′(ξ

(2)
ik )eki∆tu

k
i

−τf ′′(ξ(2)ik )eki∆tU
k
i + τf ′′(ξ

(2)
ik )eki∆tU

k
i

= τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf ′′(ξ

(2)
ik )eki∆te

k
i ,

(25)

where ξ(2)ik is between Uk
i and uki .

Substituting (13)-(14) to (10),we get

(1− τf ′(Uk
i ))∆te

k
i = δ2xe

k+1
i + f ′(ξ

(1)
ik )eki

+τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf ′′(ξ

(2)
ik )eki∆te

k
i +Rik,

1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1.
(26)

By assumption (II), we know |f ′(Uk
i )| ≤ C1. It im-

plies

1− τC1 ≤ 1− τf ′(Uk
i ) ≤ 1 + τC1,

when τ < 1
C1

,

1

1 + τC1
≤ 1

1− τf ′(Uk
i )

≤ 1

1− τC1
.

Set
C2 =

1

1− τC1
, C3 =

1

1 + τC1
,

we have
C3 ≤

1

1− τf ′(Uk
i )

≤ C2. (27)

Therefore by (26), we get

∆te
k
i =

1

(1− τf ′(Uk
i ))

(
δ2xe

k+1
i + f ′(ξ

(1)
ik )eki+

τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf ′′(ξ

(2)
ik )eki∆te

k
i +Rik

)
.

(28)
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Multiplying (28) by δ2i e
k+1
i h

(2)
i τ , and summing up

from 1 to I − 1, we get
I−1∑
i=1

δ2xe
k+1
i (ek+1

i − eki )h
(2)
i

=
I−1∑
i=1

τ

1− τf ′(Uk
i )
δ2xe

k+1
i

(
δ2xe

k+1
i + f ′(ξ

(1)
ik )eki

+τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf ′′(ξ

(2)
ik )eki∆te

k
i +Rik

)
h
(2)
i ,

(29)
By lemma 2 and the definition of norm, the left hand
of (29) can be written as

I−1∑
i=1

δ2xe
k+1
i (ek+1

i − eki )h
(2)
i = −1

2
∥δxek+1

h ∥22

+
1

2
∥δxekh∥22 −

1

2
∥δx(ek+1

h − ekh)∥22.
(30)

In fact, the left hand of (29) is as follows
I−1∑
i=1

(
δ2xe

k+1
i − δ2xe

k
i + δ2xe

k
i

)(
ek+1
i − eki

)
h
(2)
i

=
I−1∑
i=1

δ2x(e
k+1
i − eki )(e

k+1
i − eki )h

(2)
i

+
I−1∑
i=1

δ2xe
k
i (e

k+1
i − eki )h

(2)
i

= I + II,

By the definition of the second order difference quo-
tient, lemma 2 and the definition of the first order dif-
ference quotient in 2-norm,we get

I = −
I−1∑
i=1

δx(e
k+1
i+ 1

2

− ek
i+ 1

2
)δx(e

k+1
i+ 1

2

− ek
i+ 1

2
)hi+ 1

2

= −∥δx(ek+1
h − ekh)∥22,

Similarly, we get

II = −
I−1∑
i=1

δxe
k
i+ 1

2
δx(e

k+1
i+ 1

2

− ek
i+ 1

2
)hi+ 1

2

= −
I−1∑
i=1

δxe
k
i+ 1

2
δxe

k+1
i+ 1

2

hi+ 1
2
+ ∥δxekh∥22

=
1

2

I−1∑
i=1

[
− 2δxe

k
i+ 1

2
δxe

k+1
i+ 1

2

+
(
δxe

k
i+ 1

2

)2

−
(
δxe

k
i+ 1

2

)2
+
(
δxe

k+1
i+ 1

2

)2
−
(
δxe

k+1
i+ 1

2

)2]
hi+ 1

2

+∥δxekh∥22

=
1

2

I−1∑
i=1

[
− 2δxe

k
i+ 1

2
δxe

k+1
i+ 1

2

+
(
δxe

k
i+ 1

2

)2

+
(
δxe

k+1
i+ 1

2

)2]
hi+ 1

2
− 1

2

I−1∑
i=1

[(
δxe

k
i+ 1

2

)2

+
(
δxe

k+1
i+ 1

2

)2]
hi+ 1

2
+ ∥δxekh∥22

=
1

2

I−1∑
i=1

(
δxe

k+1
i+ 1

2

− δxe
k
i+ 1

2

)2
hi+ 1

2

+
1

2
∥δxek∥22 −

1

2
∥δxek+1∥22

=
1

2
∥δx(ek+1

h − ekh)∥22 +
1

2
∥δxekh∥22 −

1

2
∥δxek+1

h ∥22,

By 2-norm’s definition of two order difference divided
and inequality (27), the first term of right hand in (28)
satisfies

τ
I−1∑
i=1

1

1− τf ′(Uk
i )
δ2xe

k+1
i δ2xe

k+1
i h

(2)
i ,

≥ C3τ∥δ2xek+1
h ∥22, (31)

By (29),(30) and (31), we get

C3τ∥δ2xek+1∥22 +
I−1∑
i=1

τ

1− τf ′(Uk
i )
δ2xe

k+1
i

(
f ′(ξ

(1)
ik )eki

+τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf ′′(ξ

(2)
ik )eki∆te

k
i +Rik

)
h
(2)
i

≤ −1

2
∥δxek+1

h ∥22 +
1

2
∥δxekh∥22 −

1

2
∥δx(ek+1

h − ekh)∥22

≤ −1

2
∥δxek+1

h ∥22 +
1

2
∥δxekh∥22.

By transposing, we get

1

2
∥δxek+1

h ∥22 −
1

2
∥δxekh∥22 + C3τ∥δ2xek+1∥22

≤ −τ
I−1∑
i=1

1

1− τf ′(Uk
i )
δ2xe

k+1
i

(
f ′(ξ

(1)
ik )eki+

τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf”(ξ

(2)
ik )eki∆te

k
i +Rik

)
h
(2)
i ,

(32)
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Using Young’s inequality and inequality (27), the
right hand of (32) is changed to

−τ
I−1∑
i=1

1

1− τf ′(Uk
i )
δ2xe

k+1
i

(
f ′(ξ

(1)
ik )eki

+τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf ′′(ξ

(2)
ik )eki∆te

k
i +Rik

)
h
(2)
i

≤ ε2C3τ

2
∥δ2xek+1

h ∥22 +
2C2τ

ε2C3

I−1∑
i=1

|f ′(ξ(1)ik )eki

+τf ′′(ξ
(2)
ik )eki∆tU

k
i − τf ′′(ξ

(2)
ik )eki∆te

k
i +Rik|2h

(2)
i ,

(33)
From the second term of the right hand in (33), we
get:

2C2τ

ε2C3

I−1∑
i=1

|f ′(ξ(1)ik )eki + τf ′′(ξ
(2)
ik )eki∆tU

k
i

−τf ′′(ξ(2)ik )eki∆te
k
i +Rik|h

(2)
i

≤ 8C2τ

ε2C3

{
I−1∑
i=1

(
f ′(ξ

(1)
ik )eki

)2

h
(2)
i

+
I−1∑
i=1

(
τf ′′(ξ

(2)
ik )eki∆tU

k
i

)2

h
(2)
i

+
I−1∑
i=1

(
τf ′′(ξ

(2)
ik )eki∆te

k
i

)2

h
(2)
i +

I−1∑
i=1

R2
ikh

(2)
i

}

= Q1 +Q2 +Q3 +Q4,
(34)

where

Q1 =
8C2τ

ε2C3

I−1∑
i=1

(
f ′(ξ

(1)
ik )eki

)2

h
(2)
i ,

Q2 =
8C2τ

ε2C3

I−1∑
i=1

(
τf ′′(ξ

(2)
ik )eki∆tU

k
i

)2

h
(2)
i ,

Q3 =
8C2τ

ε2C3

I−1∑
i=1

(
τf ′′(ξ

(2)
ik )eki∆te

k
i

)2

h
(2)
i ,

Q4 =
8C2τ

ε2C3

I−1∑
i=1

R2
ikh

(2)
i .

We now estimate Qi(i = 1, 2, 3, 4) as follows.
By (22), since

∥e0∥∞ = 0, ∥u0∥∞ ≤ max
a≤x≤b

|ϕ(x)| ≤ C0,

by induction hypothesis, there exist positive constant
P satisfying

max
0≤l≤k

∥el∥∞ ≤ P.

Therefore, we have ∥el∥∞ ≤ P, ∥ul∥∞ ≤ ∥U∥∞ +

P ≤ C0 + P [7] when l = 0, 1, 2, . . . , k. Using as-
sumption (II), we get

Q1 ≤
8C2

1C2τ

ε2C3

I−1∑
i=1

(eki )
2h

(2)
i =

8C2
1C2τ

ε2C3
∥ekh∥22,

Q2 =
8C2τ

ε2C3

I−1∑
i=1

(
τf ′′(ξ

(2)
ik )eki

Uk+1
i − Uk

i

τ

)2

h
(2)
i

≤ 8C2
1C2τ

ε2C3

I−1∑
i=1

(eki )
2
(
|Uk+1

i |+ |Uk
i |
)2
h
(2)
i

≤ 32C2
0C

2
1C2τ

ε2C3

I−1∑
i=1

(eki )
2h

(2)
i

=
32C2

0C
2
1C2τ

ε2C3
∥ekh∥22,

Q3 =
8C2τ

ε2C3

I−1∑
i=1

(
τf ′′(ξ

(2)
ik )eki

ek+1
i − eki
τ

)2

h
(2)
i

≤ 16C2
1C2P

2τ

ε2C3

I−1∑
i=1

(
(ek+1

i )2 +
(
(eki )

2
)
h
(2)
i

≤ 16C2
1C2P

2τ

ε2C3

(
∥ek+1

h ∥22 + ∥ekh∥22
)
,

and
Q4 ≤ C4τO(τ + h)2,

where C4 depends upon C1 and ratio constant Rh∗ of
meshsteps.

Let ε = 1. From (32), (34) and the inequalities
about Q1, Q2, Q3, Q4, we get

∥δxek+1
h ∥22 − ∥δxekh∥22 + C3τ∥δ2xek+1∥22

≤ C5τ
(
∥ek+1

h ∥22 + ∥ekh∥22 +O(τ + h)2
)

≤ C5τ
(
∥ek+1

h ∥22 + ∥ekh∥22 + ∥δxek+1
h ∥22 + ∥δxekh∥22

+O(τ + h)2
)
,

(35)
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By lemma 4, formula (35) can be written as

∥δxek+1
h ∥22 − ∥δxekh∥22 ≤ C6τ

(
∥ek+1

i ∥22 + ∥eki ∥22

+O(τ + h)2
)
.

By lemma 5, we get

max
0≤k≤I

|δxekh∥2 ≤ C7(τ + h),

where C7 depends on C1 and the ratio constant Rh∗
of meshsteps. Therefore,

max
0≤k≤K

∥ekh∥2, max
0≤k≤K

∥ekh∥∞, max
0≤k≤K

∥δxekh∥2,

(K−1∑
i=0

∥δ2xek+1
h ∥22τ

) 1
2 ,

(
K−1∑
i=0

∥
ek+1
h − ekh

τ
∥22τ

) 1
2

≤ O(τ + h),

So, we have

max
0≤k≤K0≤i≤I

|eki |2 ≤ O(τ + h).

By lemma 3,we have

max
0≤k≤K 0≤i≤I

|δxeki+ 1
2

| ≤ 1√
h∗
∥δxek∥2

≤ C7

(
τ√
h∗

+ h
1
2
√
Rh∗

)
.

When τ√
h∗

is sufficiently small and Rh∗ is boundary,
we have

max
0≤k≤K

∥δxekh∥∞ = O(
τ√
h∗
, h

1
2 ).

5 Stability
In order to prove stability of the difference scheme,
we import the initial boundary problem

∂v

∂t
=
∂2v

∂x2
+ f(v) + ω(x, t), (36)

v(x, 0) = φ(x) + ψ(x), x ∈ [a, b], (37)

v(a, t) = α(t), v(b, t) = β(t), t ∈ [0, T ],
(38)

where ω(x, t), ψ(x) is smooth enough.
Problem (36)-(38) have unique solution v(x, t),

which satisfy the assumptions (I),(II) and (III). Sup-
pose that vki , i = 0, 1, . . . , I, k = 0, 1, . . . ,K + 1 sat-
isfy the following difference scheme:

(1− τf ′(vki ))△tv
k
i = δ2xv

k+1
i + f(vki ) + ωk

i ,
1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1,

(39)

v0i = φ(xi) + ψi, 0 ≤ i ≤ I, (40)

vk0 = α(tk), v
k
I = β(tk), 0 ≤ k ≤ K, (41)

where ωk
i = ω(xi, tk), ψi = ψ(xi),so we have the

following stability theorem.

Theorem 8 Suppose uki is the numerical solution of
the difference scheme (4)-(6),vki is the numerical so-
lution of the difference scheme (36)-(38),denote zki =

vki − uki , then when h, τ is sufficiently small,
τ√
h∗

is

sufficiently small too. Then

∥zk+1
h ∥22+

K−1∑
k=0

∥δzk+1
h ∥22τ ≤ C

(
∥ψ∥22+

K−1∑
k=0

∥ωk∥22τ
)
,

where C doesn’t depend on h and τ which is a con-
stant.

Proof: Subtracting (4)-(6) from (39)-(41) and by
mathematical treatment, we get

(1− τf ′(vki ))△tz
k
i = δ2xz

k+1
i + f(vki )− f(uki )

+τ(f ′(vki )− f ′(uki ))△tu
k
i + ωk

i ,

1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1,
(42)

z0i = ψi, 0 ≤ i ≤ I, (43)

zk0 = 0, zkI = 0, 0 ≤ k ≤ K, (44)

By the differentiability of f and the differential mean
value theorem, the second and the third term of (42)
are changed to

f(vk+1
i )− f(uk+1

i ) = f ′(ξ
(3)
ik )zki , (45)

where ξ(3)ik is between vki and uki .
Similarly the fourth term of(42) is changed to

τ(f ′(vki )− f ′(uki ))△tu
k
i = f ′′(ξ

(4)
ik )zki △tu

k
i ,
(46)

where ξ(4)ik is between vki and uki . Thus formula (42)
becomes into

(1− τf ′(vki ))△tz
k
i = δ2xz

k+1
i + f ′(ξ

(3)
ik )zki

+τf ′′(ξ
(4)
ik )zki ∆tu

k
i + ωk

i ,

1 ≤ i ≤ I − 1, 0 ≤ k ≤ K − 1, (47)

WSEAS TRANSACTIONS on MATHEMATICS Jun Zhou

E-ISSN: 2224-2880 61 Issue 1, Volume 12, January 2013



Multiplying (47) by zk+1
i h

(2)
i τ , and summing up from

1 to I − 1, we get
I−1∑
i=1

(1− τf ′(vki ))z
k+1
i (zk+1

i − zki )h
(2)
i

= τ
I−1∑
i=1

δ2xz
k+1
i zk+1

i h
(2)
i + τ

I−1∑
i=1

f ′(ξ
(3)
ik )zki z

k+1
i h

(2)
i

+τ
I−1∑
i=1

f ′(ξ
(4)
ik )zki z

k+1
i h

(2)
i + τ

I−1∑
i=1

ωk
i z

k+1
i h

(2)
i ,

0 ≤ k ≤ K − 1,
(48)

By proper deformation, (48) is changed to
I−1∑
i=1

zk+1
i (zk+1

i − zki )h
(2)
i = τ

I−1∑
i=1

δ2xz
k+1
i zk+1

i h
(2)
i

+τ
I−1∑
i=1

f ′(ξ
(3)
ik )zki z

k+1
i h

(2)
i + τ

I−1∑
i=1

f ′(ξ
(4)
ik )zki z

k+1
i h

(2)
i

+τ
I−1∑
i=1

f ′(vki )(z
k+1
i )2h

(2)
i − τ

I−1∑
i=1

f ′(vki )z
k
i z

k+1
i h

(2)
i

+
I−1∑
i=1

ωk
i z

k+1
i h

(2)
i τ,

0 ≤ k ≤ K − 1,
(49)

By the method in reference [21, 22], the left hand in
(49) is written as

I−1∑
i=1

zk+1
i (zk+1

i − zki )h
(2)
i

=
I−1∑
i=1

((zk+1
i )2 − zk+1

i zki )h
(2)
i

= ∥zk+1
h ∥22 + 1

2

I−1∑
i=1

(− 2zk+1
i zki + (zk+1

i )2

+(zki )
2)h

(2)
i − 1

2
∥zk+1

h ∥22 −
1

2
∥zkh∥22

=
1

2
(∥zk+1

h ∥22 − ∥zkh∥22) +
1

2
∥zk+1

h − zkh∥22, (50)

By lemma 2 and the definition of 2-norm, the first term
of the right hand in (49) is written into

τ
I−1∑
i=1

δ2xz
k+1
i zk+1

i h
(2)
i = −τ

I−1∑
i=1

(δxz
k+1
i )2hi+ 1

2

= −τ∥δzk+1
h ∥22,

(51)

By assumption (II) and the definition of 2-norm, the
fourth term of the right hand in (49) has estimation

τ
I−1∑
i=1

f ′(vki )(z
k+1
i )2h

(2)
i

≤ C1τ
I−1∑
i=1

(zk+1
i )2h

(2)
i = C1τ∥zk+1

h ∥22, (52)

Using the mean inequality and the definition of 2-
norm, the second term, the third term, the fifth term
and the sixth term have estimations as follows

τ
I−1∑
i=1

f ′(ξ
(3)
ik )zki z

k+1
i h

(2)
i ≤ 1

2
C1τ

I−1∑
i=1

(zki )
2+

1

2
C1τ

I−1∑
i=1

(zk+1
i )2h

(2)
i =

1

2
C1τ∥zkh∥22

+
1

2
C1τ∥zk+1

h ∥22,
(53)

τ
I−1∑
i=1

f ′(ξ
(4)
ik )zki z

k+1
i h

(2)
i ≤ 1

2
C1τ∥zkh∥22

+
1

2
C1τ∥zk+1

h ∥22, (54)

−τ
I−1∑
i=1

f ′(vki )z
k
i z

k+1
i h

(2)
i ≤ 1

2
C1τ∥zkh∥22

+
1

2
C1τ∥zk+1

h ∥22, (55)

I−1∑
i=1

ωk
i z

k+1
i h

(2)
i τ ≤ 1

2
τ
I−1∑
i=1

(ωk
i )

2h
(2)
i

+
1

2
τ
I−1∑
i=1

(zk+1
i )2h

(2)
i =

1

2
τ∥ωk

h∥22 +
1

2
τ∥zk+1

h ∥22,

(56)
Combining (50)-(56), we have

∥zk+1
h ∥22 − ∥zkh∥22 + ∥δzk+1

h ∥22τ

≤ C8τ(∥zk+1
h ∥22 + ∥zkh∥22 + ∥ωk

h∥22), (57)

where C8 is dependent on C1, but independent of h
and τ . By discrete Gronwall’s inequality and lemma
2, we have

∥zk+1
h ∥22 +

K−1∑
k=0

∥δzk+1
h ∥22τ

≤ C8(∥ψh∥22 +
K−1∑
k=0

∥ωk
h∥22τ). (58)

Therefore, the Theorem 8 is proved. ⊓⊔
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6 Numerical Experiments and Con-
clusion

Numerical example We apply the difference scheme
proposed in this paper to the following initial bound-
ary problem:

∂u

∂t
=
∂2u

∂x2
+ u2(1− u),

u(x, 0) =
1

1 + e
√
2

2
x
, x ∈ [−50, 50],

u(−50, t) =
1

1 + e−25
√
2− 1

2
t
,

u(50, t) = 1

1+e25
√

2− 1
2 t
, t ∈ [0, 10],

the classical solution is u(x, t) =
1

1 + e
√

2
2
x− 1

2
t
.

Firstly, we introduce the generation method of
non-uniform meshs. From the curve of initial func-
tion (see in Figure 1), we can see that the curve vary
quickly near x = 0, but it changes gently near the two
endpoints. Using the transformation x = 50 sinh(αξ)

sinh(α) as
used in [21], we transform the uniform grid nodes ξi
in [−1, 1] to non-uniform grid nodes xi in [−50, 50].
From Figure 2, we see that the grid nodes are central-
ized near x = 0, the grid nodes are relative sparse on
the interval endpoints, the bigger the transformation
parameter α is, the more the grid nodes is centralized.

−50 0 50

0

0.2

0.4

0.6

0.8

1

x

initial function

u(
x,

0)

Figure 1: the curve of the initial function

Secondly, we search the optimized transformation
parameter α for different grid partition. Here the opti-
mal parameter is the parameter that makes the numer-
ical solution’s error attains it minimum. In Figure 3,
numerical solution’s error is in the sense of L2 norm,
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−40
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uniform mesh

alpha=3

alpha=10

Figure 2: nonuniform grid nodes changed under trans-
formation with parameter α

when I = 100, τ = 0.25. This figure only is an ex-
ample. The similar results for other grid partition can
be obtained by the same method.
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Figure 3: Variation of Error of the Numerical Solution
in L2 Norm

From Figure 3, we see that the error decays with
the increasing of the transformation parameter α. It
implies that the more the grid nodes are centralized,
the less the error is. But this grid centralization can-
not be unlimited, this is because Rh∗ and τ√

h∗
may

be very big when the grid nodes are centralized to a
certain extent. As a result, they do not satisfy the con-
dition of Theorem 7 and Theorem 8 in which these
two values are the boundary. The numerical oscilla-
tion appearing in the right hand of the curve can prove
this point. So the centralization parameter α must be
chosen exactly, that develops the exactness of the dif-
ference solution and ensures the stability and conver-
gence of the numerical solution. By this method, we
get the optimal transformation parameter α = 13.8.
Similarly, we can get the optimal transformation pa-
rameter of the other grid partition.
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Table 1: Numerical results
linearized uniform linearized non-uniform implicit non-uniform

I τ α time ∥E∥∞ time ∥E∥∞ time ∥E∥∞
100 1 11.7 0.0110 0.1270 0.0081 0.1231 0.2701 0.0649
100 1/2 11.7 0.0116 0.0556 0.0111 0.0435 0.5161 0.0438
100 1/4 11.7 0.0126 0.0224 0.0139 0.0184 1.0231 0.0170
100 1/8 11.7 0.0143 0.0067 0.0142 0.0070 2.0114 0.0067
200 1 15.9 0.0114 0.1326 0.0125 0.1288 2.6974 0.0696
200 1/2 15.9 0.0120 0.0619 0.0141 0.0578 5.3530 0.0521
200 1/4 15.9 0.0142 0.0289 0.0134 0.0244 10.643 0.0237
200 1/8 15.9 0.0157 0.0131 0.0198 0.0093 21.193 0.0090
400 1 20 0.0127 0.1346 0.0115 0.1318 20.758 0.0771
400 1/2 20 0.0139 0.0638 0.0375 0.0614 41.459 0.0559
400 1/4 20 0.0159 0.0307 0.0153 0.0284 80.521 0.0277
400 1/8 20 0.0194 0.0148 0.0200 0.0125 157.73 0.0123

The third is to get the minimum parameter of the
same space freedom degree and different time steps.
Although the transformation parameter α of different
grid partition can be applied to solve the numerical
solution and the errors are minimum, the convergence
order cannot be tested because of the different param-
eters. In order to test the convergence order for τ ,
we get the minimum parameter by comparing the dif-
ferent optimized parameters, when space freedom de-
grees are same, time steps are in half in turn. The
parameters α are applied to numerical solving which
can justify the convergence order for τ . The value of
α and the computing results are listed in Table 1.

The L∞ norm of the errors for the chosen dif-
ferent α are listed in Table 1 when T = 10s, I =
100, I = 200 and I = 400. From Table 1, we can
see that the linearized difference scheme with non-
uniform meshes put forward in this paper is more ac-
curate than that with uniform meshes. Meanwhile,
it costs less computing time than implicit difference
scheme with non-uniform meshes of [21,22] on con-
dition that the exactness of the numerical solution has
little difference. In addition, It is known that the con-
vergence order of the numerical solution is 1st order
and stable which is proved in Theorem 7 and Theo-
rem 8. Summarily, the linearized difference scheme
studied in this paper is effective.
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